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In this paper, the slow backbone motions for segments of interleukin 1â and calbindin D9k are characterized
and the effects of these motions on the interproton cross-relaxation effects are investigated. We assume that
the flexible loop segments are involved in three motions: fast librational vibrations, slow crankshaft motions,
and the overall tumbling motion of the protein. The parameters characterizing the conformers and dynamics
(amplitude and time scale) of the flexible segments are estimated by fitting the calculated data to the
experimental heteronuclear15N relaxation data. NOESY spectra simulated by using the flexible model are in
better agreement with the experimental data than those simulated by using the rigid model. Neglecting flexibility
may cause biases in the estimated interproton distances derived from cross-relaxation peaks by up to 1 Å.

1. Introduction

The recognition of the “induced fit mechanism” of enzyme-
substrate interaction made it obvious that conformational
flexibility of biomolecules is crucially important to their
function. Thus determination of the conformation and dynamics
of the flexible parts of a biomolecule is an important step toward
a better understanding of its activity.1

Currently, NMR spectroscopy is one of the most powerful
techniques for the investigation of both the conformation and
dynamics of proteins at an atomic level. However, NMR
dynamical and structural studies remain rather separated.
Usually, the conformation of a protein is determined from the
homonuclear dipolar relaxation rates present on NOESY-type
spectra, while the dynamics of the flexible regions are inferred
from measurements of heteronuclear relaxation rates of back-
bone atoms (15N or 13CR). As a result, conformational flexibility
identified from heteronuclear NMR relaxation data is ignored
during the structure calculation process from NMR homo-
nuclear proton relaxation rates. Taking into account both types
of information (homo- and heteronuclear rates) in an energetic
cost Σ(Pcalc - Pexp)2 supposes the ability to simultaneously
(back-)calculate them and represents undoubtely the major
difficulty. Up to now, the back-calculation methods of hetero-
nuclear and dipolar proton-proton rates in the case of internal
motions are inadequate for this purpose from our point of view.
We will first briefly review them and discuss their inconve-
niences before presenting our strategy.

Available Methods for Back-Calculation of Homonuclear
Proton Relaxation Rates.One method assumes “slow ex-
change” (as compared to the overall correlation time of the
molecule) between conformations. Depending on the ratio
between the longitudinal relaxation time and the interconversion
rate,2 the back-calculated NOE’s are derived from a treatment

of the relaxation matrix similar to that of chemical exchange2,3

or are taken to be proportional to∑iRi/ri
6 where ri is the

interproton distance in theith conformer andRi its proportion.4

In this method a set of conformers is generated whose calculated
averaged proton nuclear Overhauser effects match the experi-
mental ones. The validation of these conformers is then
problematic, since a sufficiently large number of conformers
may satisfy all the experimental data without being relevant.
Furthermore, the time scale of the interconversion of conformers
covers only a limited region of the lower time scale of motions
investigated by NMR heteronuclear relaxation (exchange con-
tribution to the transversal relaxation rateR2).

Lipari and Szabo5 introduced parameters of themodel-free
approach that characterize the dynamics of each interatom
vector. The limitation of the method is that, in the case of
interproton vectors, these parameters can be obtained only from
long molecular dynamics (MD) simulations.6 The capacity of
the currently available supercomputers sets the upper limit of
length of MD to the nanosecond range for middle-sized proteins,
which restricts the time scale of the investigated internal
correlation time for interproton vectors to the tenth, i.e., “fast
motion” in terms of heteronuclear relaxation data (picosecond).
In addition, this method generally overestimates the flexibility
of mobile and solvent-exposed segments of proteins.

The final method introduced time-averaged restraints.7 The
disadvantage of this approach is again the limited computational
power, and thus the conformational transitions can be investi-
gated only in the fast motion limit.

Available Methods for Back-Calculation of Heteronuclear
Relaxation Rates.The first back-calculation method computes
the heteronuclear relaxation rates from the time course of a MD
simulation, encountering the problem of computer capacity
mentioned above.8,9

The second method calculates the NMR heteronuclear
relaxation data from a physically relevant model of motion.
Analytic forms of relaxation rates have been derived for a large
number of physical models since the early times of relaxation
studies.10 However, since the number of unknown parameters
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describing these models may be very large, and the amount of
experimental relaxation data is very limited, the discrimination
of physical models based only on experimental data is a largely
underdetermined problem.

The model-free approach5 is an alternative, convenient
method to interpret the experimental heteronuclear relaxation
data of backbone atoms (15N and13CR), without using a specific
model of motion. This approach describes internal dynamics
with generalized order parameters and correlation times of the
N-H or CR-H spin pairs. In addition to the overall correlation
time of the protein, most relaxation parameters of residues
located in the rigid parts of proteins can be described by two
parameters of librational motions,τfast (ps), which represents
an internal correlation time, andSfast

2, which characterizes the
spatial restriction of the vector’s motion. Extension of the
dynamical information obtained from heteronuclear relaxation
data about an H-X bond using such an approach to the
dynamics of1H-1H vectors is not straightforward. Recently,
LeMaster11 pointed out that these small amplitude, fast motions
do not significantly distort the interatomic distance determina-
tion. However, to characterize the relaxation of backbone atoms
located in flexible loops, one may have to include two additional
parameters,τslow (100 ps to nanoseconds) andSslow

2 character-
izing a much slower motion with a larger amplitude (Sslow

2 <
Sfast

2),12 whose effects are yet to be characterized.
Strategy for Simultaneously Calculating Heteronuclear

and Proton Homonuclear Relaxation Rates in the Nanosec-
ond-Picosecond Range.MD simulations were able to provide
qualitative if not totally satisfactory quantitative information
about the types of intramolecular motions. For protein backbone
atoms, such as the N and CR atoms, MD simulations have
discriminated between two kinds of relaxation-active pro-
cesses: well-characterized fast motions in the subpicosecond
and picosecond time scale, which are referred to as “librational
vibrations”, and slower motions on a much larger time scale
from tens of picoseconds to 100 ps and more. These slower
motions are usually too slow to be quantitatively characterized
by MD simulations. However, a considerable number of reported
MD simulations seem to indicate that most of the time, the
slower motions are crankshaft-type flips, i.e., anticorrelated
variations of neighbor backbone dihedral anglesψi-1 andφi of
the ith residue, so that the quantityψi-1(t) + φi(t) remains
constant.8,13Fushmann et al.8c have shown that when these flips
are present, they contribute to 70-80% of the relaxation of the
respective15N-1H vectors. These crankshaft flips appear to
occur in flexible loops connecting the more rigid subunits of
the protein. Residues located within the most rigid parts of the
protein such as helices andâ sheets experience only the spatially
restricted fast librational motion and the slow overall tumbling
motion of the protein.

In this paper a quantitative characterization of the slow,
backbone crankshaft motions is presented and their effects on
proton-proton cross-relaxation are investigated. Section 2
presents the theoretical basis for calculating heteronuclear and
proton-proton relaxation rates. The spectral density of the
interproton vectors is calculated by assuming anticorrelated
jumps (crankshaft motions) between conformations. The pa-
rameters of these jumps (amplitude and frequency) are derived
from the heteronuclear experimental relaxation parameters15N
R1 and15N R2 and steady-state NOE,{1H}-15N NOE.

In section 3, the conformation and dynamics of a flexible
segment of interleukin 1â and calcium-loaded calbindin are
determined. Interleukin 1â and calbindin D9k are 151 and 75
amino acid long proteins, essentially composed ofâ sheets and

helices, respectively. The results show that (i) backbone
flexibility significantly affects only the weakest NOEs and (ii)
simulated NOESY spectra are in better agreement with the
experimental spectra when our model of flexible backbone
segments is used than when the rigid model is used. For both
proteins, distance determination is found to be significantly
biased for the weakest NOEs, whereas the effects of backbone
flexibility on the strong NOEs can be neglected.

2. Back-Calculation of NOESY Spectra of Flexible
Proteins by Using15N NMR Relaxation Parameters

For the sake of simplicity we confine ourselves to the
treatment of the relaxation of15N backbone atoms, but our
observations and protocol are valid for CR atoms as well.

2.1. General Expressions for NMR Heteronuclear and
Homonuclear Relaxation Rates.At high field, the relaxation
of the15N backbone atom is governed by the dipolar interaction
with its bound1H atom and by its chemical shift anisotropy
∆σ||.14 The relaxation rate constants,R1 (spin-lattice or
longitudinal relaxation) andR2 (spin-spin or transverse relax-
ation), and the steady-state NOE,{1H}-15N NOE, are given
by

where

The15N chemical shift tensor is assumed to be symmetric with
∆σ|| ) -160 ppm.15 In eqs 1,J(ω) is distance dependent,
whereasJred(ω) is not (see eq 3).

The chemical shift anisotropy of the proton is small enough
to be safely neglected. As a consequence, the relaxation
processes of protons are dipolar in nature and result in the
following measurable relaxation parameters for a given proton
H, where the summation is taken over all other protons H′:

Equations 2 are strictly valid for nonlike spins, which is true
for the class of protons investigated here. In eqs 1 and 2, the
spectral density functions,J(ω) and Jred(ω), are given by the
cosine Fourier transform of the orientational correlation function
for a vector joining the two relevant atoms involved in the
dipolar interaction and for a unit vector along the principal axis
of the symmetrical chemical shift tensor, respectively. In the
case of amide15N-1H atoms, the direction of these two vectors

R1 ) {d2/10}[J(ωH - ωN) + 3J(ωN) +

6J(ωH + ωN)] + 2/15c
2Jred(ωN)

R2 ) {d2/20}[4J(0) + J(ωH - ωN) + 3J(ωN) + 6J(ωH) +

6J(ωH + ωN)] + 2/15c
2(2/3J

red(0) + 1/2J
red(ωN)) (1)

NOE ) 1 + {d2γH/(R1γN)}[6J(ωH + ωN) - J(ωH - ωN)]

d ) [µ0/(4π)]γHγNp

c ) γB0∆σ|

R1H ) ([µ0/(4π)]γH
2p)2/10∑

H′
[J(ωH′ - ωH) +

3J(ωH) + 6J(ωH + ωH′)]

R2H ) ([µ0/(4π)]γH
2p)2/20∑

H′
[4J(0) + J(ωH - ωH′) +

3J(ωH) + 6J(ωH′) + 6J(ωH + ωH′)] (2)

σHH ) ([µ0/(4π)]γΗ
2p)2/10[6J(ωH + ωH′) - J(ωH′ - ωH)]
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is identical. As a result, the spectral densities in eqs 1 can be
calculated with

Let us consider an isotropic protein molecule. We assume that
the correlation function of an internuclear vector (1H-15N or
1H-1H) can be factored as follows:

where the first factor describes the overall tumbling motion of
the protein with a correlation timeτc and the second factor
describes jump dynamics between discrete conformers of the
protein. The third factor refers to the fast, small amplitude
librational motions and can be modeled according to Lipari and
Szabo5 with a generalized order parameter and an internal
correlation timeSfast

2 andτfast
2, respectively. The Fourier cosine

transform of the correlation function,C(t), results in the spectral
density function,J(ω):

whereτ ) τfastτc/(τfast + τc) and from ref 16 eq 14.1:

whereN is the number of conformations,ri is the internuclear
distance in theith conformation,〈Pi〉 is the probability of finding
the molecule in theith conformation at equilibrium,Y2n(Φi

mol)
are the second rank spherical harmonics normalized according
to Rose,17 Φi

mol specifies the polar angles of the internuclear
vector in the ith conformation in a frame attached to the
molecule,λk and cij

k are related to the eigenvalues and eigen-
vectors of the rate constant matrix,T, andτk

-1 ) τc
-1 + λk.

The IJth off-diagonal element of this matrix isTIJ )
νIJe(EJ-EI)/2kT, whereνIJ is the number of trials for jump from
the Jth to the Ith conformation per unit time, whileEI is the
energy of the molecule in theIth conformation. The diagonal
element is calculated from the off-diagonal elements withTII

) -∑J*1TJI.
If the librational vibrations are much faster than the tumbling

motion and each of the jumps (i.e.,τfast , λi
-1for every i and

τfast , τc), thenJjump(ω, τc) . Jjump(ω, τfast). By means of this
approximation, the spectral density and the relaxation parameters
are

whereRl,jump, R2,jump, and NOEjump are calculated by using eqs
1 and the spectral densitiesJ, by using eqs 5.

2.2. Back-Calculation of the Heteronuclear Relaxation
Rates Using the Jump Formalism.Flexible segments can be
identified by interpreting the15N NMR relaxation data by using

the model-free approach. Relaxation rates of the backbone amide
groups in the flexible segments, such as residues Gln32-Gly33-
Glu34-Asp35-Met36 for protein interleukin 1â and Lys41-
Gly42-Gly43-Ser44 for protein calbindin D9k, cannot be de-
scribed by means of the original model-free approach; however,
an extended version of the model-free approach can be used,
which interprets the relaxation data in terms ofτc, τslow, Sslow

2,
andSfast

2.18,19 In the case of these two flexible segments, MD
simulations strongly suggest that the slow motion processes are
crankshaft type motions,8,9 confirming the initial interpretation
of the relaxation data for these residues in terms of a two-state
jump model by Clore et al. Clore et al. also calculated the
corresponding angle of jump,æ, for the HN vector. However,
this calculatedæ angle is the relaxation active angle of the HN
vector, which is different from the angle of jump,θ, of the
backbone torsion angles. To obtain theθ angle, for each residue
i two conformations are generated from the average minimized
NMR structure20 by introducing a distortion of jump amplitude
θi to the backbone dihedral anglesφ andψ:

where superscript “ave” refers to the average minimized
structure of the flexible segment and superscripts 1 and 2 to
the conformers of each residue within the flexible segment.
Interconversion between conformers 1 and 2 is then a crankshaft
type motion. Both conformers were superimposed on the original
average conformation, here conformer 1. The amplitudeθi and
frequencyνi of the jump between conformers 1 and 2 were
obtained by fitting the calculated dataR1,jump

i , R2,jump
i , NOEjump

i

to the experiment-derived data (R1
i /Sfast

i 2, R2
i /Sfast

i 2, NOEi). The
parametersτc and (Sfast

i )2 are known from refs 18 and 19. In
our calculations we assumed similar conformer energies. The
fitting was individually performed for the residues 41, 42, 43,
and 44 of calbindin and for the residues 32, 33, 34, 35, and 36
of interleukin 1â. The sign of each jump amplitudeθi was
chosen to drive, if possible, the protein into a favorable region
of the Ramachadran plot. This was not possible when the
average protein conformation was not a favorable one. In this
case, the sign was chosen so as to get the calculated interproton
NOEs in better agreement with the NOE experimental data. It
is important to note, however, that the sign ofθi does not
influence the value of the calculated heteronuclear relaxation
parameters.

2.3. Back-Calculation of NOESY Spectra of Flexible
Protein Backbone Segments.Let M be the number of residues
in the flexible backbone segment. In the case of crankshaft
motions, the number of conformations of this segment is 2M.
Thus the flexible segments of calbindin and interleukin 1â have
16 and 32 conformations, respectively, and the respective rate
constant matrixT is a 16× 16 matrix for calbindin and a 32×
32 matrix for interleukin 1â. By assuming similar conformer
energies and satisfying the principle of detailed balance, the
rate constant matrixT becomes symmetric. Each row and each
column of the matrix containsM positive, off-diagonal elements.
These elements are equal with the previously determined
frequencies:TJK ) νi, where the transition from theKth to the
Jth conformation refers to a conformer change at theith residue.
The diagonal elements areTJJ ) -∑i)1

2M
νi. The above con-

struction of theT matrix assumes that the conformer changes
are independent from each other and there are no multiple
changes simultaneously. The assumption of the independence

Jred(ω) ) rHN
6J(ω) (3)

C(t) ) exp(-t/τc)Cjump(t) Clibrational(t)

J(ω) ) Sfast
2Jjump(ω, τc) + (1 - Sfast

2)Jjump(ω,τ) (4)

Jjump(ω, τc) )

(4π/5)τc/(1 + ω2τc
2) ∑

n)-2

2 |∑
i)1

N

〈Pi〉Y2n(Φi
mol)/ri

3|2 +

∑
i,j)1

N

∑
k)1

N-1

(4π/5)τk/(1 + ω2τk
2)〈Pi〉 ∑

n)-2

2

cij
(k)Y2n(Φi

mol)Y2n
/ (Φj

mol)/

(ri
3rj

3) (5)

J ≈ Sfast
2Jjump (ω;τc)

Ri,exp≈ Sfast
2 Ri,jump (6)

NOEexp ≈ NOEjump

ψi-1
l ) ψi-1

ave, φi
l ) φi

ave

ψi-1
2 ) ψi-1

ave - θi; φi
2 ) φi

ave+ θi

(7)
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is supported by all MD simulations reported to our knowledge
for flexible parts of proteins.8,10 As a consequence of these
assumptions, the resultingR1,jump, R2,jump, and NOEjump for each
residue are the same as the ones previously calculated using
two conformations.

For simulating the NOESY spectra first the1H-1H RH

relaxation matrix was constructed by using the eigensystem of
the 2M × 2M rate constant matrixT and eqs 2 and 5. The matrix
exponentialL ) exp(-RHτm) was constructed, by using the
mathematical program libraries, Blas and Lapack, to diagonalize
the relaxation matrix,RH. All spin diffusion processes are taken
into account with this procedure. The accuracy of the calcula-
tions was checked by simulating a NOESY spectrum with
mixing time τm ) 0 ms. The accuracy of NOE-based distance
determination was found to be 0.02 Å. For graphical visualiza-
tion, the output was in the Felix 95 format and plotted from
there.

3. Results

The minimized average structures, derived from NOESY
spectra, represent the global folding of interleukin 1â and
calbindin.20 The global folding is not affected by the crankshaft

type motions of the flexible segments of these proteins. The
superposition of the 32 backbone conformers generated by the
crankshaft motions of the region 31-37 for interleukin 1â is
shown in Figure 1. Eventual bumps between the backbone atoms
caused by the jumps were checked by using the Bump routine
of InsightII (MSI, San Diego), and none was found. The
crankshaft motions affect only the local backbone structure of
the 31-37 segment of interleukin 1â and its close surroundings.
Figure 1 shows that the peptidic plane of each residue in the
32-36 segment exists in two different conformations. The
conformers are equally populated because each conformer is
assumed to have similar energy.

Parts a-c of Figure 2 show for residue Gln32 theR1,jump(ν),
R2,jump(ν), and NOEjump(ν) curves, respectively, each calculated
at four different jump amplitudes,θ, whereν, the frequency of
the jump, is the independent variable. These curves were
calculated by using eqs 1, 5, and 6. In Figure 2, the experimental
values ofR1/Sfast

2, R2/Sfast
2, and NOE relaxation parameters for

the Gln32 residue of interleukin 1â are also shown (solid lines).
The three relaxation parameters determine nicely and unambigu-
ously bothν andθ, 5 × 108 Hz and 28°, respectively. A similar
fitting procedure resulted in the following jump amplitudes and
frequencies for each residue of the 32-36 segment:-28,-56,
47, 40,-28° and 5× 108, 1.7× 108, 1.1× 108, 2.5× 108, 3
× 108 Hz. Parts a-c of Figure 3 show the excellent agreement
between the experimental relaxation parameters and the theo-
retical values calculated by using the above jump amplitudes

Figure 1. Stereoview of the superposition of the 32 conformers
generated for interleukin 1â with the crankshaft motion model. For
clarity, only the backbone atoms of the 29-38 region are shown. The
31-36 segment is highlighted in light gray.

Figure 2. Simulation of the relaxationR1, R2, and NOE parameters
using a two-state jump model as a function of the frequencyν for
interleukin 1â: the correlation time used for calculations is 8.3 ns.
The curves are drawn for different values of the amplitudeθ. θ ) 10°
(O), θ ) 20° (0), θ ) 30° (+), θ ) 40° (×).The values derived from
experimentsR1 exp/Sfast

2, R2 exp/Sfast
2, and NOE of Gln 3218 are also

depicted as horizontal solid lines.

Figure 3. 15N relaxation parameters of the 32-36 region of interleukin
1â simulated using the jump model (gray boxes) versus the experi-
mentally derived data,R2 exp/Sfast

2, R1 exp/Sfast
2, and NOE (black boxes).

Crankshaft motions of Gln32, Gly33, Glu34, Asp35, and Met36 are of
amplitude-28, -56, 47, 40, and-28° and of frequency 5× 108, 1.7
× 108, 1.3× 108, 2.5× 108, 3 × 108 Hz, respectively. Key: (A)R2;
(B) R1; (C) {1H}-15N NOE. Experimental15N relaxation data are taken
from ref 18. Experimental schemes of acquisition are those described
Kay et al. in ref 27.
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and frequencies. For each residue the deviation between the
calculated and experimental values is below the maximal
experimental error reported for similar measurements (as no
error estimates are reported for interleukin 1â, we assumed a
relative error of 2%, 2%, and 0.02 forR1, R2, and{1H}-15N
NOE, respectively). The good agreement between the calculated
and experimental data strongly supports our interpretation for
the relaxation parameters. The obtained jump amplitudes and
frequencies define 32 configurations and their interconversion
rates.

After determining the conformers and dynamics of the flexible
segment of interleukin 1â, one can simulate the respective
NOESY spectra as explained in section 2. The NH/RH portion
of the NOESY spectrum simulated at mixing time 100 ms is
shown in Figure 4b. For comparison, Figure 4a shows the
simulated spectrum for the rigid, average conformation of
interleukin 1â. It is clear from the comparison of the spectra in
Figure 4 that there are no major differences in the heights of

the most intense peaks. These are the peaks used to derive
constraints for the determination of the average protein structure.

Table 1 lists the calculated NOEs for backbone atoms with
interatomic distancesr < 5 Å. The simulated NOEs, obtained
from the flexible model, are in qualitative agreement with the
experimental ones.21 The NOEjump/NOErigid ratio ranges from
0.33 to 1.57. Not surprisingly, the major deviations from unity
are found for residues undergoing the largest amplitude motions,
and they are also the residues that are the most mobile ones
according to the model-free analysis of their relaxation data.
The distances in Table 1 were calculated from the NOEs by
using an external theoretical peak reference,29 which ensures
that the distance differences in Table 1 are the theoretically
minimal differences.11 Taking a simulated peak as a reference

Figure 4. Simulated NOESY spectra of the 31-37 region of
interleukin 1â showing the NH/RH dipolar correlations: (A) for the
rigid model; (B) for the jump model. The calculations were performed
with the relaxation matrix calculated for the whole protein, using a
mixing time τm ) 100 ms. For clarity, only the resonances of interest
are shown.

TABLE 1: Comparison of the NOEs and Derived Distances
Simulated for the 31-37 Segment of Interleukin 1â, Using
the Flexible and Rigid Modelsa

Leu
31

Gln
32

Gly
33

Gln
34

Asp
35

Met
36

NHi/NHi+1

rigid model distanceb 4.09 4.17 3.74 3.14 3.18 3.29
flexible model distanceb 4.21 4.29 3.66 3.52 3.46 3.05
exp NOEc we m ND sm s sm
NOEflexible/NOErigid

d 0.83 0.85 1.13 0.50 0.61 1.57

NHi/NHi+2

rigid model distance 4.36 4.73 4.58
flexible model distanceb 4.71 4.84 4.39
exp NOEc ND ND ND
NOEflexible/NOErigid

d 0.63 0.87 1.30

NHi/NHi+3

rigid model distance 4.66
flexible model distanceb 5.31
exp NOEc ND
NOEflexible

/NOE
rigid

d 0.34

NHi/NHi+4

rigid model distance 5.06
flexible model distanceb 5.75
exp NOEc ND
NOEflexible/NOErigid

d 0.55

RHi/NHi+1

rigid model distance 2.46 2.62 2.83-2.72 3.80 3.65 3.86
flexible model distanceb 2.54 2.91 2.78-2.77 3.91 3.54 3.83
exp NOEc M s sm sm m ND
NOEflexible/NOErigid

d 0.85 0.54 1.12-1.13 0.85 1.20 1.05

RHi/NHi+2

rigid model distance 3.44-3.68 3.82 3.91 4.10
flexible model distanceb 3.81-4.01 3.65 3.98 4.10
exp NOEc mw w ND ND
NOEflexible/NOErigid

d 0.60-0.55 1.32 0.90 1.00

RHi/NHi+3

rigid model distance 4.62-4.44 4.47 4.05
flexible model distanceb 5.05-5.19 4.67 4.02
exp NOEc ND ND ND
NOEflexible/NOErigid

d 0.50-0.46 0.77 1.05

RHi/NHi+4

rigid model distance 4.79
flexible model distanceb 5.76
exp NOEc ND
NOEflexible/NOErigid

d 0.33

a The correlation time used for calculation is 8.3 ns,18 and the mixing
time of the NOESY experiment, 100 ms.21 b Distances calculated using
the rigid and flexible models, respectively.c Experimental NOEs, taken
from ref 21. They were collected on 2D homonuclear1H-1H NOESY
spectra and 3D heteronuclear15N NOESY HMQC spectra recorded on
a 2.5 mM sample of15N-labeled interleukin 1â. d Ratios of the simulated
NOEs using the flexible and the rigid models.e Key: s, strong; sm,
strong-medium; m, medium; mw, medium-weak; w, weak; ND, non
detected.

4668 J. Phys. Chem. A, Vol. 103, No. 24, 1999 Déméné and Suga`r



peak would probably increase the differences because of the
spin diffusion. From the relationship|∆r/r| ) 1/6|(∆NOE/NOE)
it follows that for the same variation of NOEs, the major
distortions in distance determination appear for those protons
that are far from each other, i.e., for protons with small
respective NOEs. Indeed, in Table 1, the maximum distortion
in distance determination, 0.97 Å, is found for the distance
between theRH proton of Gln 32 and the NH proton of Met
36, resulting from a 33% decrease of the respective NOE. The
mean distance bias for strong NOEs is 0.08 Å, for medium
NOEs 0.22 Å, and for weak NOEs 0.31 Å, while the overall
mean distance distortion is 0.29 Å.

The model dependent differences are mainly in the intensities
of the minor peaks (see Table 1). All of these peaks belong to
nonsequential residues: HN 36/HN 32; HN 34/HN 36; HN 35/
HN 33; HN 36/HN 33; HN 35/HN 32; HN36/HR133, HN 36/
HR2 33; HN 35/HR1 33, HN 35/HR2 33; HN 36/HR 32, HN
36/HR 34, HN 34/HR 31, HN 37/HR 35. In this list of non
sequential NOEs, only the NOEs HN 35/HR1 33, HN 35/HR2

33, and HN 36/HR 34 are reported to be present in the
experimental spectra, with a medium-weak and weak intensi-
ties, respectively. The respective interproton distances derived
from the simulation using the rigid model (3.44-3.68 and 3.82)
seem to be in better agreement with the distances obtained from
experimental NOEs than the distances derived from NOEs of
the flexible model (3.81-4.01 and 3.65). However, for all the
experimentally undetected nonsequential NOEs, the NOEjump/
NOErigid ratio is less than 1 (except for NH 36/NH 38 andRH
35/NH 38). Although these peaks are still present in the
simulated spectra of the flexible model, it is likely that the
experimental noise prevents their detection.

Parts a and b of Figure 5 compare the distances derived from
the spectra simulated using the flexible and rigid models with
an external peak and an internal peak as reference, respectively.
To limit the spin diffusion effect as much as we can, we chose
the peak between the geminalâ protons of Cys8 as an internal
reference. Only distances below 6 Å were taken into account.
Calibration with this internal reference peak resulted in an
overall underestimation of distances. But, independently from
the type of the reference, the effects of the models remain
similar. The introduced flexibility decreases generally the NOEs,
i.e., increases the derived distances, and this phenomenon is
more pronounced at larger distances. Our simulation also shows
that the difference between the distance obtained from the
flexible and rigid models is more pronounced when distances
are derived from an internal reference peak; i.e., the rigid model
underestimates the distances in the range of 3.5-5 Å if one
takes an internal peak as reference (see Figure 5b), while in the
case of an external reference, the underestimation is obvious in
the range of 4-5 Å (see Figure 5a).

We also investigated the effect of calculating the spectral
density in different ways on the simulated spectra. The spectral
densities of protons in the 31-36 segment of interleukin 1â
were calculated by means of the (i) exact jump dynamics, (ii)
static 〈r-6〉 averaging over the conformers, and (iii) more
“dynamic” 〈r-3〉2 averaging over the conformers. Each of these
simulations was performed at zero mixing time. Thus there is

Figure 5. Plot of the NOE derived distances with the flexible model
versus the rigid model for interleukin 1â using (a) an external theoritical
peak reference and (b) the calculated NOE effect between the geminal
protons of Cys 8 as reference. For all calculations, the mixing time of
the NOESY experiment was set to 100 ms.

Figure 6. 15N relaxation parameters of the 41-44 region of calbindin
D9k simulated using the jump model (gray boxes) versus the experi-
mentally derived data19 (black boxes),R2 exp/Sfast

2, R1 exp/Sfast
2, and

NOE. Crankshaft motions of Lys 41, Gly 42, Gly43, and Ser 44 are of
amplitude 44, 72, 69, and 48° and of frequency 3.6× 108, 3.6× 108,
3.2 × 108, and 3.3× 108 Hz. Key: (A) R2; (B) R1; (C) {1H}-15N
NOE. Experimental15N relaxation data are taken from ref 19.
Experimental schemes of acquisition are those described by Skelton et
al. in ref 28.
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no spin diffusion involved in the following results. Because the
〈r-6〉 and 〈r-3〉2 averaging take into account conformational
flexibility, it is expected that the corresponding average distances
are closer to the distances obtained from the flexible than the
rigid model. For interleukin 1â, the root mean square (rms)
deviation of the interproton distances obtained from the flexible
model with the distances obtained with the〈r-3〉2 averaging is
0.23 Å while the rms deviation with the distances obtained with
the 〈r-6〉 averaging is 0.27 Å. The maximal distance deviation
for 〈r-3〉2 averaging was found for the HN 35/HN 37 distance
calculated to be 5.38 Å with the flexible model versus 4.94 Å
with the 〈r-3〉2 averaging, i.e., 0.44 Å. This is to be compared
to the maximal deviation of 0.94 Å found between rigid and
flexible models. Not surprisingly, introducing dynamical averag-
ing reduces the maximal distance distortion caused by mobility
by a factor 2.

The above-described calculations were repeated to investigate
the 41-44 segment of the calbindin protein.15N relaxation data
suggested the occurrence of crankshaft motions in this segment.
A good fit of the calculated and observed15N relaxation
parameters was obtained by using the model of crankshaft
motions with amplitudesθ of 44, 72, 69, and 48° and jump
frequencies of 3.6× 108, 3.6× 108, 3.2× 108, and 3.3× 108

Hz. Figure 6 shows good agreement between the calculated
relaxation parameters and the experimental ones. In Table 2
experimental (Dr. Walter Chazin, personal communication) and
calculated1H-1H NOEs are listed. The calculated NOEs were
obtained from both the rigid and the flexible models. In every
case, the flexible model was a better predictor of the experi-
mental NOE than the rigid model. The most striking model
dependent differences for nonsequential NOEs were found for
theRH 39/HN 43 andRH 41/HN 44 contacts, which were not
experimentally detected, and whose NOEjump/NOErigid ratios are
0.3 and 0.26, respectively. The respective interproton distances
calculated from the rigid model are 3.81 and 4.26 Å, while from

the flexible model they are 4.66 and 5.34 Å. The larger
interproton distances, predicted by the flexible model, explain
why the NOEs were experimentally not detected. As we noted
above, the larger interproton distances, i.e., the weaker NOEs,
are affected mostly by the model we use. In our example for
calbindin, the rigid model incorrectly predicts most of the
medium-weak, nonsequential NOEs, while in the case of the
flexible model these peaks are probably buried under the noise
level.

4. Discussion and Conclusion

In this paper the effects of crankshaft type motions on the
interproton cross-relaxation rates are investigated. We focus on
this type of anticorrelated motions, because, according to MD
simulations, they are the main relaxation active processes in
flexible loops of proteins. It is important to note that for
constrained cyclic peptides the assumption of crankshaft motions
is not valid, since MD simulations on anthanamide showed that
distortions of the backbone exhibit a variable degree of
anticorrelation.22 We assume that the conformers, of the flexible
loop are equally populated. To determine the population of the
conformers, one would need to measure at least another
relaxation parameter. Unfortunately, the commonly measured
relaxation parameters, such as the1Hz

NNz and1Hz
NNx rates, are

not reliable enough for our purpose because of the presence of
proton relaxation leakage. However, we note that the recent
advances in the measurement of new relaxation parameters of
15N and13C atoms could alleviate this problem.23

The conformers and dynamics of flexible protein segments
were determined according to the following protocol. Short
flexible segments of interleukin 1â and calbindin were previ-
ously identified by analyzing the respective experimental
heteronuclear relaxation data.17,18 The overall correlation time
and the order parameter of the librational motions of the N-H
vectors were those previously extracted by means of the

TABLE 2: Comparison of the NOEs and Derived Distances Simulated for the 39-44 Segment of Calbindin D9k, Using the
Flexible and Rigid Modelsa

Ser 38 Leu 39 Leu 40 Lys 41 Gly 42 Gly 43 Ser 44

NHi/NHi+1

rigid model distanceb 3.02 3.62 3.30 2.97 3.71 2.40 4.35
flexible model distanceb 3.03 3.61 3.58 3.67 3.90 2.46 4.51
exp NOEc 4.6 3.2 NDe 3.8 5.5 3.1 ND
NOEflexible/NOErigid

d 1.00 1.01 0.61 0.28 0.75 0.87 0.82

NHi/NHi+2

rigid model distance 4.24 4.92 4.49 4.35
flexible model distanceb 4.23 5.41 5.38 4.41
exp NOEc 3.2 ND ND ND
NOEflexible/NOErigid

d 1.01 0.56 0.34 0.92

RHi/NHi+1

rigid model distance 3.90 4.06 3.94 3.80 3.09-2.88 3.26-3.16 2.78
flexible model distanceb 3.90 4.05 4.12 3.74 3.16-2.97 3.33-3.30 2.79
exp NOEc 3.2 ND ND 3.8 4.6 4.6 5.5
NOEflexible/NOErigid

d 1.00 0.567 0.77 1.11 0.87-1.04 0.94-0.74 1.00

RHi/NHi+2

rigid model distance 4.82 4.40 4.53 3.69-3.32
flexible model distanceb 4.83 5.05 5.38 3.63-3.34
exp NOEc 4.2 5.5 ND 0
NOEflexible/NOErigid

d 1.00 0.44 0.36 1.10-0.97

RHi/NHi+3 rigid model distance 4.53 3.81 4.26
flexible model distanceb 4.90 4.66 5.34
exp NOEc 5.5 ND ND
NOEflexible/NOErigid

d 0.62 0.297 0.258

a The correlation time used for calculation is 4.25 ns,19 and the mixing time of the NOESY experiment, 200 ms.b Distances calculated using the
rigid and flexible models, respectively.c Experimental NOEs (Dr. Walter Chazin, personal communication). They were collected on 2D homonuclear
1H-1H NOESY spectra recorded on a 5 mMsample of calbindin D9k. d Ratios of the NOEs simulated using the flexible and the rigid models.e ND:
nondetected.
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extended model-free approach.17,18Then, the parameters of the
crankshaft motions (amplitudes and frequencies) were deter-
mined separately for each residue by fitting the simulated15N
heteronuclear relaxation data to the experimental ones. We
investigated the effects of the crankshaft motions on the
homonuclear proton NOEs. The presence of crankshaft type
motions can affect1H-1H NOEs so that the derived distances
may increase by up to 1 Å for the weakest NOEs, while the
intensity of strong cross-peaks was only slightly affected. Our
analysis shows that strong NOEs back-calculated from the rigid
average structure are very likely present in the experimental
NOESY spectra. On the other hand, NOEs corresponding to
distances around 4 Å can be absent from the experimental
NOESY spectra due to the intramolecular motions. We think
that the assumption of equally populated conformers does not
affect this general conclusion. Assuming the second population
less populated than the original one would obviously lead to
jumps of larger amplitude, so that the minor weight of the NOEs
stemming from this second population would be counterbalanced
by their more drastic difference. For sake of clarity and
simplicity, our present investigation has focused on NOEs of
backbone protons. The effects of backbone crankshaft motions
would be more pronounced for side chain atoms, due to the
superposition of intra-side-chain motions. It is important to note
that a recent study by Bremi et al.24 showed that NMR relaxation
data for side chains of phenylalanines in antanamide can be
described by Gaussian axial fluctuations superimposed by lattice
jump motions, referred to as the GAF and Jump model. This
approach is very similar to ours, from the conceptual point of
view, in separating the relaxation active processes; however,
Bremi et al. are particularly interested in characterizing precisely
the fast motions. The work presented by us is closer to the so-
called “collective NMR relaxation model” of Bruschweiler and
Case,25 which is based on normal mode dynamics incorporating
the heteronuclear relaxation data as restraints. In contrast to our
study, this approach was restricted to the investigation of fast
fluctuations ofτinternal< 50 ps. LeMaster11 recently investigated
motions of the N-H vectors on interproton distance determi-
nation. His work was based on simulations where the N-H
and/or C-H vectors were allowed to freely diffuse into a cone
or exchange between two conformations provided the resulting
simulated order parameterS2 reproduced the experimentally
derived one. This investigation was also limited to fast motions,
while our approach is valid for a broad time scale of motions.

Finally, we investigated the effect of calculating the spectral
density in different ways on the simulated spectra. The exact
method using the interconversion rates between conformers was
compared with the more static methods using〈r-6〉 and 〈r-3〉2

averaging among conformers. It was shown that the static
averaging methods provide better results than the rigid model,
but they still underestimate the effect of flexibility in NOE
simulation. It was found that〈r-3〉2 averaging provides NOEs
in better agreement with the exact method than〈r-6〉 averaging.
This is the case because〈r-6〉 averaging should be used only
when the equilibration between conformers is slower than the
overall correlation time of the molecule.〈r-3〉2 averaging on
the other hand is applicable when the equilibration of the
conformers is faster than the overall correlation time. In the
case of interleukin 1â and calbindin, the overall tumbling is
slower than the time scale of the crankshaft motions which
explains the success of the〈r-3〉2 averaging.

The precision of conversion of NOEs into distance restraints
has been widely debated.26 Currently, the general tendency is
to construct the largest set of experimentally derived constraints

with loose upper and lower bounds. The present study shows
that the distance constraints can be tightened for those segments
of proteins where only limited conformational flexibility, i.e.,
librational vibrations, is revealed by heteronuclear NMR
relaxation measurements.
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